The Raman spectrum of a virus contains the structural signature of each of its molecular components (Thomas, 1987). We report the first Raman spectrum obtained from an intact, lipid-containing virus--the icosahedral bacteriophage PRD1--and show that this spectrum contains characteristic structure markers for the major capsid protein, the packaged double-stranded DNA genome, and the viral membrane which resides between the capsid and DNA. We find that the packaged genome of PRD1 exhibits Raman markers typical of the B-DNA secondary structure. Comparison of the Raman spectrum of the packaged DNA with that of protein-free DNA extracted from the virion shows further that the B-form secondary structure is not significantly perturbed by packaging in the virion. The Raman signature of the PRD1 membrane, monitored within the virion at 4 degrees C, is that of a phospholipid liquid-crystalline phase. The PRD1 capsid, which comprises several hundred copies of the major coat protein P3 (product of viral gene III) and a few copies of minor proteins, incorporates P3 capsomers predominantly in the beta-sheet conformation. The beta-sheet structure of P3 is maintained in the fully assembled PRD1 virion, as well as in the empty capsid. The present results demonstrate the feasibility of obtaining structural information from the three different classes of biomolecules--nucleic acid, protein, and lipid--which constitute a membrane-lined virus particle. Our results also demonstrate that the coat protein and double-stranded DNA components of a lipid-containing bacteriophage share many structural features in common with bacteriophage lacking a lipid membrane.