Featured Application: This work proposes a method to measure the respiratory split in a quantitative way. Based on the assumption model, the aortic component can be extracted by average and the pulmonary component can be estimated by subtracting. The calculation of the split is performed by timing difference of the two components. The method can track the respiratory split and has applications in monitoring heart response to respiration.
Abstract:The second heart sound consists of aortic and pulmonary components. Analysis on the changes of the second heart sound waveform in respiration shows that the aortic component has little variation and the delay of the pulmonary component is modulated by respiration. This paper proposes a novel model to discriminate the aortic and pulmonary components using respiratory modulation. It is found that the aortic component could be simply extracted by averaging the second heart sounds over respiratory phase, and the pulmonary component could be extracted by subtraction. Hence, the split is measured by the timing difference of the two components. To validate the measurement, the method is applied to simulated second heart sounds with known varying splits. The simulation results show that the aortic and pulmonary components can be successfully extracted and the measured splits are close to the predefined splits. The method is further evaluated by data collected from 12 healthy subjects. Experimental results show that the respiratory split can be accurately measured. The minimum split generally occurs at the end of expiration and the split value is about 20 ms. Meanwhile, the maximum split is about 50 ms at the end of inspiration. Both the trend of split varying with respect to respiratory phase and the numerical range of split varying are comparable to the results disclosed by previous physiologists. The proposed method is compared to the two previous well known methods. The most attractive advantage of the proposed method is much less complexity. This method has potential applications in monitoring heart hemodynamic response to respiration.