2020
DOI: 10.1063/5.0028826
|View full text |Cite
|
Sign up to set email alerts
|

On the modeling of scalar mixing timescale in filtered density function simulation of turbulent premixed flames

Abstract: A new closure of the scalar mixing timescale is formulated to enhance the predictability of large eddy simulation (LES)/filtered density function (FDF) simulations for turbulent premixed flames. Specifically, the new model integrates a dynamic closure for turbulence-induced mixing with a closure for reaction-enhanced mixing, such that the model explicitly accounts for the subgrid mixing due to turbulence and reaction. The model adaptively adjusts the relative contribution from these two aspects according to th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 10 publications
(1 citation statement)
references
References 49 publications
0
1
0
Order By: Relevance
“…This enthusiastic response is another indication of the respect Ted O'Brien has within the international research community of turbulence and reactive flows. These contributions are on diverse topics including combustion instability, 150,151 scalar mixing, [152][153][154][155][156] homogeneous isotropic turbulence, [157][158][159][160] turbulent premixed flames, [161][162][163][164][165][166][167][168][169][170][171] turbulent non-premixed flames, [172][173][174][175] wallbounded turbulence, [176][177][178] turbulent combustion modeling, [179][180][181] FDF/PDF, [182][183][184][185][186][187][188][189][190][191][192] and two-phase turbulent flows. [193][194][195][196]<...…”
Section: Organization Of This Simentioning
confidence: 99%
“…This enthusiastic response is another indication of the respect Ted O'Brien has within the international research community of turbulence and reactive flows. These contributions are on diverse topics including combustion instability, 150,151 scalar mixing, [152][153][154][155][156] homogeneous isotropic turbulence, [157][158][159][160] turbulent premixed flames, [161][162][163][164][165][166][167][168][169][170][171] turbulent non-premixed flames, [172][173][174][175] wallbounded turbulence, [176][177][178] turbulent combustion modeling, [179][180][181] FDF/PDF, [182][183][184][185][186][187][188][189][190][191][192] and two-phase turbulent flows. [193][194][195][196]<...…”
Section: Organization Of This Simentioning
confidence: 99%