“…(95)The lattice x(s) and the polynomials p, r that follow from (7) arex(s) = s(s + γ + δ + 1) , p(x) = x + 1 4 , r(x) = x + (γ + δ + 1) 2 4 . (96){P n } n≥0 is related to a linear functional L that satisfies D(φL) = M(ψL), where the polynomials φ, ψ are given by[10] φ(x) = (−1 + 2N + δ − γ)x + N (1 + γ)(1 + γ + δ) , ψ(x) = −2x + 2N (1 + γ) . (97) The Stieltjes function satisfies(18), A DS = C MS + D, with A, C given by(20), thus,A = Mφ + 2r(x) − 1 Mψ , C = −1 − Dφ + Mψ .…”