Using the functional approach, we state and prove a characterization theorem for classical orthogonal polynomials on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable) including the Askey-Wilson polynomials. This theorem proves the equivalence between seven characterization properties, namely the Pearson equation for the linear functional, the second-order divided-difference equation, the orthogonality of the derivatives, the Rodrigues formula, two types of structure relations, and the Riccati equation for the formal Stieltjes function.
Abstract:The main aim of this paper is the development of suitable bases that enable the direct series representation of orthogonal polynomial systems on nonuniform lattices (quadratic lattices of a discrete or a q-discrete variable). We present two bases of this type, the first of which allows one to write solutions of arbitrary divided-difference equations in terms of series representations, extending results given by Sprenger for the q-case. Furthermore, it enables the representation of the Stieltjes function, which has already been used to prove the equivalence between the Pearson equation for a given linear functional and the Riccati equation for the formal Stieltjes function. If the Askey-Wilson polynomials are written in terms of this basis, however, the coefficients turn out to be not q-hypergeometric. Therefore, we present a second basis, which shares several relevant properties with the first one. This basis enables one to generate the defining representation of the Askey-Wilson polynomials directly from their divided-difference equation. For this purpose, the divided-difference equation must be rewritten in terms of suitable divided-difference operators developed in previous work by the first author.
Classical orthogonal polynomials are known to satisfy seven equivalent properties, namely the Pearson equation for the linear functional, the second-order differential/difference/q-differential/ divided-difference equation, the orthogonality of the derivatives, the Rodrigues formula, two types of structure relations, and the Riccati equation for the formal Stieltjes function. In this work, following previous work by Kil et al. (J Differ Equ Appl 4:145–162, 1998a; Kyungpook Math J 38:259–281, 1998b), we state and prove a non-linear characterization result for classical orthogonal polynomials on non-uniform lattices. Next, we give explicit relations for some families of these classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.