Despite the high pressure employed in plasma display panels, the energy balance of low-energy electrons is found to be dominated by inelastic collisions, and the resulting nonlocal electron kinetics plays a key role in the striation formation. Surface charge accumulation on the anode dielectric, however, is also needed for striations to form. It is the combined effect of surface charges and nonlocal electron kinetics that results in the striation formation in plasma display panel cells. Two-dimensional fluid simulations, which assume local electron kinetics, and two-dimensional particle-in-cell Monte Carlo collision simulations with a bare conducting anode show that striations do not form if either the nonlocal electron kinetics or the surface charge accumulation is not considered.