Advanced neural interfaces mediate a bioelectronic link between the nervous system and microelectronic devices, bearing great potential as innovative therapy for various diseases. Spikes from a large number of neurons are recorded leading to creation of big data that require online processing under most stringent conditions, such as minimal power dissipation and on-chip space occupancy. Here, we present a new concept where the inherent volatile properties of a nano-scale memristive device are used to detect and compress information on neural spikes as recorded by a multielectrode array. Simultaneously, and similarly to a biological synapse, information on spike amplitude and frequency is transduced in metastable resistive state transitions of the device, which is inherently capable of self-resetting and of continuous encoding of spiking activity. Furthermore, operating the memristor in a very high resistive state range reduces its average in-operando power dissipation to less than 100 nW, demonstrating the potential to build highly scalable, yet energy-efficient on-node processors for advanced neural interfaces.