Nanomagnetic logic, which makes use of arrays of dipolar-coupled single domain nanomagnets for computation, holds promise as a low power alternative to traditional computation with CMOS. Beyond the use of nanomagnets for Boolean logic, nanomagnets can also be exploited for non-deterministic computational schemes such as edge detection in images and for solving the traveling salesman problem. Here, we demonstrate the potential of arrangements of thermally-active nanomagnets based on artificial spin ice for both deterministic and probabilistic computation. This is achieved by engineering structures that follow particular thermal relaxation pathway consisting of a sequence of reorientations of magnet moments from an initial field-set state to a final low energy output state. Additionally, we demonstrate that it is possible to tune the probability of attaining a particular final low-energy state, and therefore the likelihood of a given output, by modifying the intermagnet distance. Finally, we experimentally demonstrate a scheme to connect several computational building blocks for complex computation. *
Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.