Recent times witnessed a significant interest in regularizing, a $$ D \rightarrow 4 $$D→4 limit, of EGB gravity initiated by Glavan and Lin [Phys. Rev. Lett. 124, 081301 (2020)] by re-scaling GB coupling constant as $$\alpha /(D-4)$$α/(D-4) and taking limit $$D \rightarrow 4$$D→4, and in turn these regularized 4D gravities have nontrivial gravitational dynamics. Interestingly, the maximally or spherically symmetric solution to all the regularized gravities coincides in the 4D case. In view of this, we obtain an exact spherically symmetric wormhole solution in the 4D EGB gravity for an isotropic and anisotropic matter sources. In this regard, we consider also a wormhole with a specific radial-dependent shape function, a power-law density profile as well as by imposing a particular equation of state. To this end, we analyze the flare-out conditions, embedding diagrams, energy conditions and the volume integral quantifier. In particular our −ve branch results, in the limit $$\alpha \rightarrow 0$$α→0, reduced exactly to vis-$$\grave{a}$$a`-vis 4D Morris-Thorne of GR.