2021
DOI: 10.48550/arxiv.2109.14587
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

On the properties of Laplacian pseudoinverses

Abstract: The pseudoinverse of a graph Laplacian is used in many applications and fields, such as for instance in the computation of the effective resistance in electrical networks, in the calculation of the hitting/commuting times for a Markov chain and in continuous-time distributed averaging problems. In this paper we show that the Laplacian pseudoinverse is in general not a Laplacian matrix but rather a signed Laplacian with the property of being an eventually exponentially positive matrix, i.e., of obeying a strong… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?