We study the "hyperboloidal Cauchy problem" for linear and semilinear wave equations on Minkowski space-time, with initial data in weighted Sobolev spaces allowing singular behaviour at the boundary, or with polyhomogeneous initial data. Specifically, we consider nonlinear symmetric hyperbolic systems of a form which includes scalar fields with a λφ p nonlinearity, as well as wave maps, with initial data given on a hyperboloid; several of the results proved apply to general space-times admitting conformal completions at null infinity, as well to a large class of equations with a similar non-linearity structure. We prove existence of solutions with controlled asymptotic behaviour, and asymptotic expansions for solutions when the initial data have such expansions. In particular we prove that polyhomogeneous initial data (satisfying compatibility conditions) lead to solutions which are polyhomogeneous at the conformal boundary I + of the Minkowski space-time.