2014
DOI: 10.1007/s10958-014-1710-9
|View full text |Cite
|
Sign up to set email alerts
|

On the Regularization of a Linear Fredholm Boundary-Value Problem by a Degenerate Pulsed Action

Abstract: We establish the conditions of regularization of the linear boundary-value problem for a system of impulsive ordinary differential equations. We also construct a generalized Green's operator and determine the form of linear impulsive perturbation of the regularized linear boundary-value problem.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
2

Year Published

2016
2016
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 9 publications
(3 citation statements)
references
References 8 publications
0
1
0
2
Order By: Relevance
“…The results obtained, similarly [1,2,9,10,11,12] can be used in the theory of nonlinear Noetherian boundary value problems for systems of dierence-algebraic equations. In the case of insolvability, the dierence-algebraic boundary value problems can be regularized analogically to [13,14,15]. In addition, the results obtained similarly to [16]…”
Section: Reduction Of a Dierence-algebraic Boundary Value Problem To mentioning
confidence: 99%
“…The results obtained, similarly [1,2,9,10,11,12] can be used in the theory of nonlinear Noetherian boundary value problems for systems of dierence-algebraic equations. In the case of insolvability, the dierence-algebraic boundary value problems can be regularized analogically to [13,14,15]. In addition, the results obtained similarly to [16]…”
Section: Reduction Of a Dierence-algebraic Boundary Value Problem To mentioning
confidence: 99%
“…Особенностью задачи Коши (1) для дифференциально-алгебраических уравнений [6,7,8] [13,14]. Поставим следующую задачу: для каких классов задача Коши (1) имеет единственное решение при произвольных α, β, γ, δ…”
Section: постановка задачиunclassified
“…Òàêèì îáðàçîì, ïîñòàâëåííàÿ çàäà÷à ðàâíîñèëüíà ñëåäóþùåé: ìîaeíî ëè â êðèòè÷åñêîì ñëó÷àå ìàëûìè âîçìóùåíèÿìè ïðèâåñòè ìàòðè÷íîå óðàâíåíèå (1) îáùåãî âèäà ê íåêðèòè÷åñêîìó ñëó÷àþ? Ïîñëåäíÿÿ çàäà÷à îòíîñèòñÿ ê çàäà÷àì î ðåãóëÿðèçàöèè [6,14,16,17]. Êàê èçâåñòíî [18], ëþáàÿ (m × n)− ìàòðèöà Q â îïðåäåëåííîì áàçèñå ìîaeåò áûòü ïðåäñòàâëåíà â âèäå…”
Section: îñíîâíîé ðåçóëüòàòunclassified