We study soliton solutions of the Kadomtsev-Petviashvili II equation (-4u(t)+6uu(x)+3u(xxx))(x)+u(yy)=0 in terms of the amplitudes and directions of the interacting solitons. In particular, we classify elastic N-soliton solutions, namely, solutions for which the number, directions, and amplitudes of the N asymptotic line solitons as y-->infinity coincide with those of the N asymptotic line solitons as y-->-infinity. We also show that the (2N-1)!! types of solutions are uniquely characterized in terms of the individual soliton parameters, and we calculate the soliton position shifts arising from the interactions.