2005
DOI: 10.5802/jtnb.520
|View full text |Cite
|
Sign up to set email alerts
|

On the ring of p-integers of a cyclic p-extension over a number field

Abstract: On the ring of p-integers of a cyclic p-extension over a number field par HUMIO ICHIMURA RÉSUMÉ. Soit p un nombre premier. On dit qu'une extension finie, galoisienne, N/F d'un corps de nombres F, à groupe de Galois G, admet une base normale p-entiere (p-NIB en abrégé) si O'N est libre de rang un sur l'anneau de groupe O'F[G] où O'F = O'F[1/p] désigne l'anneau des p-entiers de F. Soit m = pe une puissance de p et N/F une extension cyclique de degré m. Lorsque 03B6m ~ F , nous donnons une condition nécessaire et… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2008
2008
2022
2022

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 6 publications
0
1
0
Order By: Relevance
“…We can now deduce a theorem that is essentially the same as a result of Kersten and Michaliček ([KM89], Theorem 2.1). Also see [Gre92] and [Ich05].…”
Section: The Induction Stepmentioning
confidence: 99%
“…We can now deduce a theorem that is essentially the same as a result of Kersten and Michaliček ([KM89], Theorem 2.1). Also see [Gre92] and [Ich05].…”
Section: The Induction Stepmentioning
confidence: 99%