This paper presents an adaptive continuation method for buckling topology optimization of continuum structures using the Solid Isotropic Material with Penalization (SIMP) model. For optimization problems of minimizing structural compliance subject to constraints on material volume and buckling load factors, it has been found that the conflict between the requirements for structural stiffness and stability may have an adverse impact on the performance of existing optimization algorithms. An automatic scheme for adjusting the penalization parameter is introduced to deal with this conflict and thus achieves better designs. Based on an investigation on the effect of the penalization parameter on design evolution during the optimization process, a rule is established to determine the appropriate penalization parameter values. Using this rule, an effective scheme is developed for determining the penalization parameter values such that the buckling constraints are appropriately considered throughout the optimization process. Numerical examples are presented to illustrate the effectiveness of the proposed method.