Abstract. Before isogeometric analysis can be applied to solving a partial differential equation posed over some physical domain, one needs to construct a valid parametrization of the geometry. The accuracy of the analysis is affected by the quality of the parametrization. The challenge of computing and maintaining a valid geometry parametrization is particularly relevant in applications of isogemetric analysis to shape optimization, where the geometry varies from one optimization iteration to another. We propose a general framework for handling the geometry parametrization in isogeometric analysis and shape optimization. It utilizes an expensive non-linear method for constructing/updating a high quality reference parametrization, and an inexpensive linear method for maintaining the parametrization in the vicinity of the reference one. We describe several linear and non-linear parametrization methods, which are suitable for our framework. The non-linear methods we consider are based on solving a constrained optimization problem numerically, and are divided into two classes, geometry-oriented methods and analysisoriented methods. Their performance is illustrated through a few numerical examples.
a b s t r a c tWe consider a model problem of isogeometric shape optimization of vibrating membranes whose shapes are allowed to vary freely. The main obstacle we face is the need for robust and inexpensive extension of a B-spline parametrization from the boundary of a domain onto its interior, a task which has to be performed in every optimization iteration. We experiment with two numerical methods (one is based on the idea of constructing a quasi-conformal mapping, whereas the other is based on a spring-based mesh model) for carrying out this task, which turn out to work sufficiently well in the present situation. We perform a number of numerical experiments with our isogeometric shape optimization algorithm and present smooth, optimized membrane shapes. Our conclusion is that isogeometric analysis fits well with shape optimization.
Abstract-We consider the benchmark problem of magnetic energy density enhancement in a small spatial region by varying the shape of two symmetric conducting scatterers. We view this problem as a prototype for a wide variety of geometric design problems in electromagnetic applications. Our approach for solving this problem is based on shape optimization and isogeometric analysis. One of the major difficulties we face to make these methods work together is the need to maintain a valid parametrization of the computational domain during the optimization. Our approach to generating a domain parametrization is based on minimizing a second order approximation to the Winslow functional in the vicinity of a reference parametrization. Furthermore, we enforce the validity of the parametrization by ensuring the non-negativity of the coefficients of a B-spline expansion of the Jacobian. The shape found by this approach outperforms earlier design computed using topology optimization by a factor of one billion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.