We investigate the state complexity of the square operation on languages represented by deterministic, alternating, and Boolean automata. For each [Formula: see text] such that [Formula: see text], we describe a binary language accepted by an [Formula: see text]-state deterministic finite automaton with [Formula: see text] final states meeting the upper bound [Formula: see text] on the state complexity of its square. We show that in the case of [Formula: see text], the corresponding upper bound cannot be met. Using the binary deterministic witness for square with [Formula: see text] states where half of them are final, we get the tight upper bounds [Formula: see text] and [Formula: see text] on the complexity of the square operation on alternating and Boolean automata, respectively.