Abstract. We study the state complexity of regular operations in the class of ideal languages.We prefer the term "quotient complexity" instead of "state complexity", and we use derivatives to calculate upper bounds on quotient complexity, whenever it is convenient. We find tight upper bounds on the quotient complexity of each type of ideal language in terms of the complexity of an arbitrary generator and of its minimal generator, the complexity of the minimal generator, and also on the operations union, intersection, set difference, symmetric difference, concatenation, star and reversal of ideal languages.
a b s t r a c tA language L over an alphabet Σ is a right (left) ideal if it satisfies L = LΣ * (L = Σ * L). It is a two-sided ideal if L = Σ * LΣ * , and an all-sided ideal if L = Σ * L, the shuffle of Σ * with L. Ideal languages are not only of interest from the theoretical point of view, but also have applications to pattern matching. We study the state complexity of common operations in the class of regular ideal languages, but prefer to use the equivalent term ''quotient complexity'', which is the number of distinct left quotients of a language. We find tight upper bounds on the complexity of each type of ideal language in terms of the complexity of an arbitrary generator and of the minimal generator, and also on the complexity of the minimal generator in terms of the complexity of the language. Moreover, tight upper bounds on the complexity of union, intersection, set difference, symmetric difference, concatenation, star, and reversal of ideal languages are derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.