2014
DOI: 10.1007/s10455-014-9436-y
|View full text |Cite
|
Sign up to set email alerts
|

On the stability of Einstein manifolds

Abstract: Certain curvature conditions for stability of Einstein manifolds with respect to the Einstein-Hilbert action are given. These conditions are given in terms of quantities involving the Weyl tensor and the Bochner tensor. In dimension six, a stability criterion involving the Euler characteristic is given.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

4
39
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
6
2
2

Relationship

1
9

Authors

Journals

citations
Cited by 38 publications
(44 citation statements)
references
References 29 publications
4
39
0
1
Order By: Relevance
“…Consider a manifold (M, g) that is a Riemannian product of Einstein manifolds. Then (M, g) is Einstein if and only if the factors have the same Einstein constant E. It turns out that if E > 0, then (M, g) is always unstable (see [12], Prop. 3.3.7).…”
Section: Theorem 13mentioning
confidence: 99%
“…Consider a manifold (M, g) that is a Riemannian product of Einstein manifolds. Then (M, g) is Einstein if and only if the factors have the same Einstein constant E. It turns out that if E > 0, then (M, g) is always unstable (see [12], Prop. 3.3.7).…”
Section: Theorem 13mentioning
confidence: 99%
“…• stable (or linearly stable): Sc ′′ g | T Tg < 0. In particular, g is a local maximum of Sc| C 1 since by (2), T T g exponentiates into a slice for the Diff(M )-action (see [B, 12.22] or [Kr1,Lemma 2.6.3]).…”
Section: Neutstablementioning
confidence: 99%
“…1.143]) задается на пространстве гладких сечений расслоения ковариантных p-тензоров (p 1) на многообразии (M, g). Тематика исследований, связанная с лапласианом Лихнеровича, актуальна и в настоящее время, в подтверждение чего приведем защищенные в последнее время за рубежом диссертации [12,20,26], а также статьи и монографии с результатами, связанными с приложениями лапласиана Лихнеровича к общей теории относительности (см., например, [14,17]), теории устойчивости эйнштейновых структур (см., например, [1, гл. 12; § H] и [21]) и потокам Риччи (см., например, [11, c. 112]).…”
Section: введение на N-мерном (Nunclassified