We consider the volume-normalized Ricci flow close to compact shrinking Ricci solitons. We show that if a compact Ricci soliton (M, g) is a local maximum of Perelman's shrinker entropy, any normalized Ricci flow starting close to it exists for all time and converges towards a Ricci soliton. If g is not a local maximum of the shrinker entropy, we show that there exists a nontrivial normalized Ricci flow emerging from it. These theorems are analogues of results in the Ricci-flat and in the Einstein case [HM13,Krö13b].
Certain curvature conditions for stability of Einstein manifolds with respect to the Einstein-Hilbert action are given. These conditions are given in terms of quantities involving the Weyl tensor and the Bochner tensor. In dimension six, a stability criterion involving the Euler characteristic is given.
In this paper, an obstruction against the integrability of certain infinitesimal solitonic deformations is given. Using this obstruction, we show that the complex projective spaces of even complex dimension are rigid as Ricci solitons although they have infinitesimal solitonic deformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.