Abstract:The stability of the representation of finite rank operators in terms of a basis is analyzed. A conditioning is introduced as a measure of the stability properties. This conditioning improves some other conditionings because it is closer to the Lebesgue function. Improved bounds for the conditioning of the Fourier sums with respect to an orthogonal basis are obtained, in particular, for Legendre, Chebyshev, and disk polynomials. The Lagrange and Newton formulae for the interpolating polynomial are also conside… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.