1984
DOI: 10.1017/s0004972700001660
|View full text |Cite
|
Sign up to set email alerts
|

On the structure of polynomially normal operators

Abstract: We present some results concerning the structure of polynomially normal operators.It is shown, among other things, that if T is normal for some n > 1, then T is quasi-similar to a direct sum of a normal operator and a compact operator and if p(T) is normal with T essentially normal, then T can be written as the sum of a normal operator and a compact operator.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2005
2005
2023
2023

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(2 citation statements)
references
References 8 publications
0
1
0
1
Order By: Relevance
“…Polynomially normal operators have been discussed in [4], [7], as operator valued roots for polynomial equations p(z) − N = 0 with N normal. We formulate a structure result (see Theorem 3.1, in [7], also Theorem 2 in [8] ). Theorem 3.8.…”
Section: Polynomially Normal Operators In Hilbert Spacesmentioning
confidence: 99%
“…Polynomially normal operators have been discussed in [4], [7], as operator valued roots for polynomial equations p(z) − N = 0 with N normal. We formulate a structure result (see Theorem 3.1, in [7], also Theorem 2 in [8] ). Theorem 3.8.…”
Section: Polynomially Normal Operators In Hilbert Spacesmentioning
confidence: 99%
“…Цель данной статьи -распространить утверждение теоремы 3 на некоторый подкласс матриц с кубическими минимальными многочленами. Назовем матрицу A ∈ M n полиномиально нормальной степени d, если существует унитарный мно-гочлен p(z) степени d такой, что матрица p(A) нормальна, и q(A) не является нор-мальной матрицей ни для какого многочлена q(z) степени меньшей, чем d. (Это определение заимствовано из [5], [6].) В этой терминологии обычные нормальные матрицы суть полиномиально нормальные матрицы степени 1.…”
unclassified