2019
DOI: 10.1007/978-3-030-16833-9_13
|View full text |Cite
|
Sign up to set email alerts
|

On the Three-Legged Accessibility Property

Abstract: We show that certain types of the three-legged accessibility property of a partially hyperbolic diffeomorphism imply the existence of a unique minimal set for one strong foliation and the transitivity of the other one. In case the center dimension is one, we also give a criteria to obtain three-legged accessibility in a robust way. We show some applications of our results to the time-one map of Anosov flows, skew products and certain Anosov diffeomorphisms with partially hyperbolic splitting.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
3

Relationship

2
1

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 15 publications
0
0
0
1
Order By: Relevance
“…Se presentan propiedades dinámicas a través de derivada Schwarziana en [7]. En [11] y [14], se analizan conjuntos invariantes relevantes de dichos mapas.…”
Section: Introducción Y Antecedentesunclassified
“…Se presentan propiedades dinámicas a través de derivada Schwarziana en [7]. En [11] y [14], se analizan conjuntos invariantes relevantes de dichos mapas.…”
Section: Introducción Y Antecedentesunclassified