2012
DOI: 10.1007/978-3-642-34459-6_12
|View full text |Cite
|
Sign up to set email alerts
|

On the Use of Consensus Clustering for Incremental Learning of Topic Hierarchies

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
11
0
6

Year Published

2014
2014
2016
2016

Publication Types

Select...
4
2

Relationship

1
5

Authors

Journals

citations
Cited by 9 publications
(17 citation statements)
references
References 16 publications
0
11
0
6
Order By: Relevance
“…In this paper, we first propose to use an unsupervised learning method, called BC 2 (Buckshot Consensus Clustering) [4], Fig. 1: Hierarchical structure of the contextual attribute "period of the year" [5] to generate topic hierarchies from textual data, that can be viewed as contextual information that characterize the items.…”
Section: Our Proposalmentioning
confidence: 99%
See 2 more Smart Citations
“…In this paper, we first propose to use an unsupervised learning method, called BC 2 (Buckshot Consensus Clustering) [4], Fig. 1: Hierarchical structure of the contextual attribute "period of the year" [5] to generate topic hierarchies from textual data, that can be viewed as contextual information that characterize the items.…”
Section: Our Proposalmentioning
confidence: 99%
“…In this sense, we use an approach for topic hierarchy construction based on the consensus clustering called BC 2 (Buckshot Consensus Clustering) [4]. In BC 2 approach, it is possible to combine solutions of different topic extraction algorithms in a single consensual solution.…”
Section: A Contextual Information From Topic Hierarchiesmentioning
confidence: 99%
See 1 more Smart Citation
“…In this sense, consensus clustering allows the combination of different clustering solutions into a unique and more robust clustering solution [10,13,14]. Thus, if a document is mistakenly allocated to a particular clustering solution, the same document will not necessarily be mistakenly allocated in other clustering solutions -i.e., eventual errors can be corrected in the final solution obtained by consensus clustering [15].…”
Section: Introductionmentioning
confidence: 99%
“…Já a complexidade das estratégias divisivas crescem exponencialmente em relação ao tamanho do conjunto de dados, proibindo sua aplicação em conjuntos de dados grandes (Xu and Wunsch, 2008). No entanto, nosúltimos anos foram propostos algoritmos de agrupamento hierárquico divisivos com complexidade semelhante aos aglomerativos, possibilitando sua aplicação em conjuntos de dados maiores, inclusive em coleções textuais (Steinbach et al, 2000;Marcacini et al, 2012b).…”
Section: Métodos Hierárquicosunclassified