During the past years, there has been an increasing interest in studying oscillation and nonoscillation criteria for dynamical systems on time scales that harmonize the oscillation and nonoscillation theory for the continuous and discrete cases in order to combine them in one comprehensive theory and eliminate obscurity from both. We not only classify nonoscillatory solutions of two-dimensional systems of first-order dynamic equations on time scales but also guarantee the existence of such solutions using the Knaster, Schauder-Tychonoff and Schauder's fixed point theorems. The approach is based on the sign of components of nonoscillatory solutions. A short introduction to the time scale calculus is given as well. Examples are significant in order to see if nonoscillatory solutions exist or not. Therefore, we give several examples in order to highlight our main results for the set of real numbers R, the set of integers Z and q N 0 = {1, q, q 2 , q 3 , …}, q >1, which are the most well-known time scales.