A linear low density polyethylene (LLDPE) obtained from a metallocene based catalyst, was blended in an extruder with a high density polyethylene (HDPE) homopolymer synthesized with an iron based catalyst. The bimodal polyethylenes, made with blends from 0 to 100 wt % of copolymer were characterized by SEC, DSC, ESEM, SEC-FTIR, and TREF, while their resistance to the slow crack growth (SCG) was evaluated through the PENT test. Results provide that polymer blends with copolymer contents between 47.5 and 72.5 wt % are suitable for pipe applications. Furthermore, a method based on the intercrystalline tie chains calculus is proposed as suitable and attractive, because of its simplicity and novelty, to forecast long term performance and to predict capabilities.