Current issue like the COVID–19 pandemic show how elementary knowledge and hygiene behaviours are important for ordinary people. Microbiological hazards, not just viruses, can be transmitted in various ways through touch screens. For ordinary users, there is a wide range of behaviours that affect the ability to transfer microbial hazards (viruses, bacteria and fungi). The purpose of the paper is to analyse the association between knowledge and behaviour of touch screen users based on surveys. This paper presents selected results of a survey conducted at the end of 2019 (pre–COVID–19 survey). The survey was conducted on a group of 172 IT school students. The relationship between responses using a 2D linear model regression and clustering is used. Most respondents believe that bacteria were more common than viruses on touch screens. The respondents declare altruism in terms of a greater willingness to lend their smartphone, rather than to use someone else’s. An interesting result is that respondents often lend their smartphone to others, while being aware that viruses or bacteria are present on the touch screens. The results can be used in terms of changes in the education process of smartphone users in relation to microbiological hazards.
The Slit Island Method (SIM) is a technique for the estimation of the fractal dimension of an object by determining the areaperimeter relations for successive slits. The SIM could be applied for image analysis of irregular grayscale objects and their classification using the fractal dimension. It is known that this technique is not functional in some cases. It is emphasized in this paper that for specific objects a negative or an infinite fractal dimension could be obtained. The transformation of the input image data from unipolar to bipolar gives a possibility of reformulated image analysis using the Ising model context. The polynomial approximation of the obtained area-perimeter curve allows object classification. The proposed technique is applied to the images of cervical cell nuclei (Papanicolaou smears) for the preclassification of the correct and atypical cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.