2016
DOI: 10.1007/s10766-016-0462-1
|View full text |Cite
|
Sign up to set email alerts
|

On the Virtualization of CUDA Based GPU Remoting on ARM and X86 Machines in the GVirtuS Framework

Abstract: The astonishing development of diverse and different hardware platforms is twofold: on one side, the challenge for the exascale performance for big data processing and management; on the other side, the mobile and embedded devices for data collection and human machine interaction. This drove to a highly hierarchical evolution of programming models. GVirtuS is the general virtualization system developed in 2009 and firstly introduced in 2010 enabling a completely transparent layer among GPUs and VMs. This paper… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
25
0

Year Published

2017
2017
2019
2019

Publication Types

Select...
7
1

Relationship

5
3

Authors

Journals

citations
Cited by 29 publications
(25 citation statements)
references
References 36 publications
0
25
0
Order By: Relevance
“…Full virtualization completely emulates the CPU, memory, and I/O devices in order to provide a guest OS with an environment iden- [Becchi et al 2012;Duato et al 2009;Duato et al 2010a;Duato et al 2010b;Giunta et al 2010;Gupta et al 2009;Hansen 2007;Humphreys et al 2002;Jang et al 2013;Kato et al 2012;Kuzkin and Tormasov 2011;Laccetti et al 2013;Lagar-Cavilla et al 2007;Lama et al 2013;Lee et al 2016;Li et al 2012;Liang and Chang 2011;Merritt et al 2011;Montella et al 2014;Montella et al 2016a;Montella et al 2016b;Niederauer et al 2003;Oikawa et al 2012;Peña et al 2014;Pérez et al 2016;Prades et al 2016;Ravi et al 2011;Reaño et al 2012;Reaño et al 2013;Reaño et al 2015a;Reaño et al 2015b;Rossbach et al 2011;Sengupta et al 2013;Sengupta et al 2014;Shi et al 2009;Shi et al 2011;Shi et al 2012;Tien and You 2014;Vinaya et al 2012;Xiao et al 2012;You et al 2015;...…”
Section: System Virtualizationmentioning
confidence: 99%
See 1 more Smart Citation
“…Full virtualization completely emulates the CPU, memory, and I/O devices in order to provide a guest OS with an environment iden- [Becchi et al 2012;Duato et al 2009;Duato et al 2010a;Duato et al 2010b;Giunta et al 2010;Gupta et al 2009;Hansen 2007;Humphreys et al 2002;Jang et al 2013;Kato et al 2012;Kuzkin and Tormasov 2011;Laccetti et al 2013;Lagar-Cavilla et al 2007;Lama et al 2013;Lee et al 2016;Li et al 2012;Liang and Chang 2011;Merritt et al 2011;Montella et al 2014;Montella et al 2016a;Montella et al 2016b;Niederauer et al 2003;Oikawa et al 2012;Peña et al 2014;Pérez et al 2016;Prades et al 2016;Ravi et al 2011;Reaño et al 2012;Reaño et al 2013;Reaño et al 2015a;Reaño et al 2015b;Rossbach et al 2011;Sengupta et al 2013;Sengupta et al 2014;Shi et al 2009;Shi et al 2011;Shi et al 2012;Tien and You 2014;Vinaya et al 2012;Xiao et al 2012;You et al 2015;...…”
Section: System Virtualizationmentioning
confidence: 99%
“…However, these frameworks only focus on utilizing GPUs and need to adopt sophisticated scheduling algorithms that can utilize both processors by partitioning and load-balancing workloads differently for fused CPU-GPU architectures. Montella et al [2016b] explored NVIDIA's unified memory to simplify memory management in GPU virtualization. However, the sole use of unified memory incurs non-negligible performance degradation in data-intensive applications [Li et al 2015] because NVIDIA maintains its discrete GPU design and automatically migrates data between the host and the GPU.…”
Section: Challenges and Future Directionsmentioning
confidence: 99%
“…As described in Montella et al with a remarkable level of details, GVirtuS leverages on the split‐driver model: a back‐end , a communicator , and one or more front‐end (s).…”
Section: The Rapid Offloading Service Architecturementioning
confidence: 99%
“…We select GVirtuS [7] for our exploration of ideal fairness and high utilization of virtualized accelerators because it is the only GPU virtualization framework available that is both open source and supports the latest version of CUDA and OpenCL [18]. In GVirtuS, when the connection between the frontend and the backend is first established, the backend spawns a child process to differentiate the GPU context from those of other applications.…”
Section: Background and Related Workmentioning
confidence: 99%