2022
DOI: 10.5269/bspm.51272
|View full text |Cite
|
Sign up to set email alerts
|

On the weakly nilpotent graph of a commutative semiring

Abstract: Let S be a commutative semiring with unity. In this paper, we introduce the weakly nilpotent graph of a commutative semiring. The weakly nilpotent graph of S, denoted by Γw(S) is defined as an undirected simple graph whose vertices are S and two distinct vertices x and y are adjacent if and only if xy 2 N(S), where S= Sn f0g and N(S) is the set of all non-zero nilpotent elements of S. In this paper, we determine the diameter of weakly nilpotent graph of an Artinian semiring. We prove that if w(S) is a forest, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?