Extending the well-known result that every fuzzy metric space, in the sense of Kramosil and Michalek, has a completion which is unique up to isometry, we show that every KM-fuzzy quasi-metric space has a bicompletion which is unique up to isometry, and deduce that for each KM-fuzzy quasi-metric space, the completion of its induced fuzzy metric space coincides with the fuzzy metric space induced by its bicompletion.