It is our main purpose in this paper to approach the quasi-pseudometrization problem in (bi)topological spaces in a way which generalizes all the well-known results on the subject naturally, and which is close to a "Bing-Nagata-Smirnov style" characterization of quasi-pseudometrizability.
Different types of quasi-uniform completeness are shown to coincide in certain uniformly weakly regular spaces. This result generalizes Deák’s result in [4] which answers to the question of Fletcher and Hunsaker in [8].
The different notions of Cauchy sequence and completeness proposed in the literature for quasi-pseudometric spaces do not provide a satisfactory theory of completeness and completion for all quasi-pseudometric spaces. In this paper, we introduce a notion of completeness which is classical in the sense that it is made up of equivalence classes of Cauchy sequences and constructs a completion for any given 0 quasi-pseudometric space. This new completion theory extends the existing completion theory for metric spaces and satisfies the requirements posed by Doitchinov for a nice theory of completeness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.