To improve the tribological properties of pure MoS2 coating, the MoS2–Zr composite lubricating coatings were prepared on the WC/TiC/Co carbide surface utilizing radio frequency magnetron sputtering method combining with multiple arc ion plating technology. The effects of different Zr target currents on the surface morphologies, roughness, Zr content, adhesive force, thickness, microhardness and tribological behaviors of the composite coatings were systematically investigated. Results showed that the properties of MoS2 coating can be remarkably enhanced through co-deposition of a certain amount of Zr. As the Zr target current increased, the Zr content, surface roughness, thickness, and micro-hardness gradually increased, while the adhesive force of coatings increased first and then decreased. The friction behaviors and wear modes of the composite coatings both varied obviously with the increase of Zr current. The mechanism was mainly attributed to the different components and mechanical properties of the coatings caused by various Zr current.