Process optimisation for laser polishing novel 3D printed SS316L parts Evaluating the effects of key polishing parameters on SS316L surface roughness Detailed spectroscopic analysis of oxide layer formation due to laser polishing Comparative surface integrity analysis of SS parts polished in air and argon A maximum reduction in roughness of over 94% achieved at optimised polishing settings
Laser micro-machining is a promising manufacturing solution for fabricating complex micro-engineering products in wide range of materials that incorporate different multi-scale functional features. Optical beam deflector systems are key components in laser micro-machining systems, and they are one of the main factors determining the processing speed and hence machining throughput. However, their performance is speed dependent and the negative dynamics effects have a direct impact on the laser micro-machining accuracy, repeatability and reproducibility. This article presents a generic software solution for minimising these negative dynamics effects, thus improving significantly the laser machining performance across the full range of available processing speeds. In particular, these improvements are achieved by introducing machine-specific compensations in machining vectors to counteract beam deflectors' inertia regardless of their directions, length and set process speed. An empirical model was developed to obtain data about the actual dynamic response of the beam deflection system across the full range of available processing speeds, and then based on these data, the proposed generic software was implemented into a stand-alone 'adaptive' postprocessor. The generation of machine executable part programs is automated, and it is only necessary for the user to enter the selected scanning speeds and beam diameters. Experimental validation was conducted to demonstrate the capability of the proposed software tool. The results demonstrate that substantial improvements can be obtained in machining quality by maintaining a constant pulse distance throughout the machining operations, while the dimensional accuracy is maintained across the available processing speeds without sacrificing the machining efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.