The following inequality for0<p<1andan≥0originates from a study of Hardy, Littlewood, and Pólya:∑n=1∞((1/n)∑k=n∞ak)p≥cp∑n=1∞anp. Levin and Stečkin proved the previous inequality with the best constantcp=(p/(1-p))pfor0<p≤1/3. In this paper, we extend the result of Levin and Stečkin to0<p≤0.346.