2016
DOI: 10.18287/2412-6179-2016-40-4-543-551
|View full text |Cite
|
Sign up to set email alerts
|

Onboard processing of hyperspectral data in the remote sensing systems based on hierarchical compression

Abstract: 1 Самарский национальный исследовательский университет имени академика С.П. Королёва, Самара, Россия, 2 Институт систем обработки изображений РАН -филиал ФНИЦ «Кристаллография и фотоника» РАН, Самара, Россия Аннотация Работа посвящена решению задачи бортовой обработки гиперспектральных данных с целью последующей передачи по каналам связи в системах дистанционного зондирования Земли. В качестве базового алгоритма сжатия данных, необходимого для сокращения объема передаваемой информации, предлагается использов… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
7
0
1

Year Published

2016
2016
2020
2020

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 20 publications
(8 citation statements)
references
References 0 publications
0
7
0
1
Order By: Relevance
“…From table 1 it is seen that the interchannel correlation increases, starting from channel 5. This suggests that the channels whose indices lie in the range [4][5][6][7][8][9][10][11] have a high correlation dependence, the maximum correlation value between channel 10 and 11. 0,23 0,3 0,56 0,89 1 0,95 0,95 0,95 0,95 0,92 0,92 0, 9 5 0,23 0,27 0,51 0,81 0,95 1 0,97 0,97 0,97 0,96 0,95 0,95 6 0,22 0,29 0,53 0,85 0,95 0,97 1 0,985 0,983 0,978 0,972 0,968 7 0,234 0,29 0,52 0,845 0,945 0,975 0,985 1 0,990 0,981 0,984 0,982 8 0,23 0,29 0,50 0,82 0,935 0,970 0,983 0,990 1 0,992 0,991 0,988 9 0,23 0,29 0,50 0,81 0,924 0,963 0,978 0,989 0,992 1 0,995 0,994 10 0,224 0,295 0,491 0,803 0,912 0,955 0,972 0,984 0,991 0,995 1 0,996 11 0,23 0,30 0,499 0,798 0,907 0,950 0,968 0,982 0,988 0,994 0,996 1 3.1 Based on the constructed correlation matrix, we construct the L tree of indicesthese are ordered pairs of channels (for example, channels numbered 10 and 11).…”
Section: Description Of the Compression Algorithm 21 Compression Sequnclassified
See 1 more Smart Citation
“…From table 1 it is seen that the interchannel correlation increases, starting from channel 5. This suggests that the channels whose indices lie in the range [4][5][6][7][8][9][10][11] have a high correlation dependence, the maximum correlation value between channel 10 and 11. 0,23 0,3 0,56 0,89 1 0,95 0,95 0,95 0,95 0,92 0,92 0, 9 5 0,23 0,27 0,51 0,81 0,95 1 0,97 0,97 0,97 0,96 0,95 0,95 6 0,22 0,29 0,53 0,85 0,95 0,97 1 0,985 0,983 0,978 0,972 0,968 7 0,234 0,29 0,52 0,845 0,945 0,975 0,985 1 0,990 0,981 0,984 0,982 8 0,23 0,29 0,50 0,82 0,935 0,970 0,983 0,990 1 0,992 0,991 0,988 9 0,23 0,29 0,50 0,81 0,924 0,963 0,978 0,989 0,992 1 0,995 0,994 10 0,224 0,295 0,491 0,803 0,912 0,955 0,972 0,984 0,991 0,995 1 0,996 11 0,23 0,30 0,499 0,798 0,907 0,950 0,968 0,982 0,988 0,994 0,996 1 3.1 Based on the constructed correlation matrix, we construct the L tree of indicesthese are ordered pairs of channels (for example, channels numbered 10 and 11).…”
Section: Description Of the Compression Algorithm 21 Compression Sequnclassified
“…, 0 (2020) https://doi.org/10.1051/e3sconf /20201490 E3S Web of Conferences 149 0 RPERS 2019 20 200 3 3 Based on researches of hyperspectral AI in the field of compression [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20] presented in the works of scientists from Russia, China, the USA, India, etc., it can be assumed that the developed methods and lossless compression algorithms for hyperspectral AI can be improved by reducing their computational efficiency and increasing the compression ratio by modifying the preprocessing steps using mathematical methods. In addition, new compression preprocessing steps can be proposed that effectively increase the compression ratio and reduce the compression process time.…”
Section: Introductionmentioning
confidence: 99%
“…The dependence parameters (6) calculated for real hyperspectral images are shown in paper [30]: Fig. 6.…”
Section: K <mentioning
confidence: 99%
“…Therefore, the publications at that time primarily considered algorithms for processing single-channel (halftone) images, which are basic for implementing all compression methods. More recent publications are related to the compression of hyperspectral images, where the hierarchical compression method for both hyperspectral images (HSI) and for ERS as a whole occupies one of the leading positions [8], [9], [10]. In [9], the following statistical characteristics of the HSI are given:…”
Section: Introductionmentioning
confidence: 99%