data record to earlier years. The new definition has the additional advantage that UTH can be calculated directly from given atmospheric profiles of humidity and temperature without a detour via radiative transfer simulations. Detailed uncertainty information in CDRs derived from satellite-based Earth observations are needed to support the application of the data in climate research 7,8. Providing such information on CDR level (level 2 or 3) has mainly been constrained by the availability of uncertainty information in the underlying FCDRs (level 1) in the past. Within the FIDUCEO project four new versions of such FCDRs were created, among them the FIDUCEO Microwave FCDR used as input for our UTH CDR. The FCDR includes information on observational uncertainty on pixel level, which is the result of rigorous uncertainty analyses based on metrological principles 9. These uncertainties are propagated to the spatially and temporally averaged quantities in the UTH CDR. Depending on the spatial and temporal correlation behaviour of the underlying error sources, uncertainties are divided into three different classes, enabling the user to propagate them to spatial and temporal averages of the data. The FIDUCEO UTH CDR is validated against an exisiting microwave UTH data record provided by the Satellite Application Facility on Climate Monitoring (CM-SAF). Differences in monthly tropical mean UTH do not exceed 2% RH and can be attributed to differences in the underlying FCDR and in the CDR processing in approximately equal parts. The structure of this paper is as follows: The Methods chapter introduces the satellite instruments, the UTH retrieval method and the new definition of UTH. Furthermore, a detailed description of the CDR processing is provided. This is followed by the Data Records chapter, which includes a description of the CDR data file format as well as the satellite missions and time periods covered. The subsequent chapter Technical Validation consists of an evaluation of the UTH retrieval performance, the comparison of our CDR with the CM-SAF UTH CDR and a description of uncertainties not estimated in the CDR.