Lipopolysaccharide (LPS) induces neutrophils to synthesize and secrete pro-inflammatory cytokines and chemokines, which are regulated at both the transcriptional and translational level. We reported previously that neutrophils stimulated with LPS induce expression of genes typically expressed in response to stimulation with antiviral type I interferons (IFN), such as myxovirus resistance-1 (MX1). However, we present evidence that this response of neutrophils to lipopolysaccharide occurs in the absence of interferon-dependent signaling. Lipopolysaccharide-stimulated neutrophils do not phosphorylate the interferon-associated transcription factors signal transducer and activator of transcription-1 and -3, and medium from lipopolysaccharide-stimulated cells was unable to induce MX1 gene expression, suggesting a soluble factor is not involved. Furthermore, LPS did not alter expression of IFNA and IFNB genes. In contrast to neutrophils, LPS-stimulated human monocyte-derived macrophages induced the expression of MX1, but IFNB was induced, and medium from LPSstimulated monocyte-derived macrophages supported MX1 induction. An inhibitor of p38 kinase blocked induction of MX1 by lipopolysaccharide, but not IFN␣, in neutrophils, and induction of MX1 was dependent on protein synthesis. LPS, but not IFN␣, substantially activated p38. In contrast, the induction of MX1 by LPS in monocyte-derived macrophages was insensitive to p38 inhibition, although p38 is phosphorylated in LPS-stimulated but not IFN␣-stimulated monocyte-derived macrophages. The expression of MX1 in neutrophils and monocyte-derived macrophages is mediated by TLR4 but not TLR2. The data presented here indicate that lipopolysaccharide activates novel interferon-independent signaling pathways in neutrophils and that induction of antiviral genes is a consequence of exposure of neutrophils to bacterial products.