The problem of optimal design of symmetrical double-lap adhesive joint is considered. It is assumed that the main plate has constant thickness, while the thickness of the doublers can vary along the joint length. The optimization problem consists in finding optimal length of the joint and an optimal cross-section of the doublers, which provide minimum structural mass at given strength constraints. The classical Goland-Reissner model was used to describe the joint stress state. A corresponding system of differential equations with variable coefficients was solved using the finite difference method. Genetic optimization algorithm was used for numerical solution of the optimization problem. In this case, Fourier series were used to describe doubler thickness variation along the joint length. This solution ensures smoothness of the desired function. Two model problems were solved. It is shown that the length and optimal shape of the doubler depend on the design load.