This article is concerned with a system of semilinear parabolic equations with a free boundary, which arises in a mutualistic ecological model. The local existence and uniqueness of a classical solution are obtained. The asymptotic behavior of the free boundary problem is studied. Our results show that the free problem admits a global slow solution if the inter-specific competitions are strong, while if the inter-specific competitions are weak there exist the blowup solution and global fast solution.