In this work, the static and dynamic compaction response of a six-material mixture, containing both brittle and ductile constituents, is compared. Quasi-static and dynamic compaction experiments were conducted on samples and the results compared to simulations. Optical analyses of compacted samples indicate that dynamically compacting samples to near 300 m/s is not sufficient for complete compaction or localized grain melt. Simulations indicate that a wide distribution of temperature and stress states are achieved in the dynamically compacted samples; compaction speeds should be increased to near 800 m/s at which point copper grains achieve melt temperatures on their surfaces. The experimental data is used to fit a bulk P-α equation of state (EOS) that can be used for simulating large-scale dynamic compaction for industrial applications.