Indoor maps lay the foundation for most indoor location-based services (LBS). Building Information Modeling (BIM) data contains multiple dimensional computer-aided design information. Some studies have utilized BIM data to automatically extract 3D indoor maps. A complete 3D indoor map consists of both floor-level maps and cross-floor paths. Currently, the floor-level indoor maps are mainly either grid-based maps or topological maps, and the cross-floor path generation schemes are not adaptive to building elements with irregular 3D shapes. To address these issues, this study proposes a novel scheme to extract an accurate 3D indoor map with any shape using BIM data. Firstly, this study extracts grid-based maps from BIM data and generates the topological maps directly through the grid-based maps using image thinning. A novel hybrid indoor map, termed Grid-Topological map, is then formed by the grid-based maps and topological maps jointly. Secondly, this study obtains the cross-floor paths from cross-floor building elements by a four-step process, namely X-Z projection, boundary extraction, X-Z topological path generation, and path-BIM intersection. Finally, experiments on eight typical types of cross-floor building elements and three multi-floor real-world buildings were conducted to prove the effectiveness of the proposed scheme, the average accuracy rates of the evaluated paths are higher than 88%. This study will advance the 3D indoor maps generation and inspire the application of indoor maps in indoor LBS, indoor robots, and 3D geographic information systems.