This is the accepted version of the paper.This version of the publication may differ from the final published version.
Permanent repository link
SUMMARYThis paper combines the finite impulse response filtering with the Kalman structure (predictor/corrector) and proposes a fast iterative bias-constrained optimal finite impulse response filtering algorithm for linear discrete time-invariant models. In order to provide filtering without any requirement of the initial state, the property of unbiasedness is employed. We first derive the optimal finite impulse response filter constrained by unbiasedness in the batch form and then find its fast iterative form for finite-horizon and full-horizon computations. The corresponding mean square error is also given in the batch and iterative forms. Extensive simulations are provided to investigate the trade-off with the Kalman filter. We show that the proposed algorithm has much higher immunity against errors in the noise covariances and better robustness against temporary model uncertainties. The full-horizon filter operates almost as fast as the Kalman filter, and its estimate converges with time to the Kalman estimate.