Syslog is a critical data source for analyzing system problems. Converting unstructured log entries into structured log data is necessary for effective log analysis. However, existing log parsing methods demonstrate promising accuracy on limited datasets, but their generalizability and precision are uncertain when applied to diverse log data. Enhancements in these areas are necessary. This paper proposes an online log parsing method called DLLog, which is based on deep learning and has the longest common subsequence. DLLog utilizes the GRU neural network to mine template words and applies the longest common subsequence to parse log entries in real-time. In the offline stage, DLLog combines multiple log features to accurately extract the template words, creating a log template set to assist online log parsing. In the online stage, DLLog parses log entries by calculating the matching degree between the real-time log entry and the log template in the log template set. This method also supports the incremental update of the log template set to handle new log entries generated by systems. We summarized the previous works and validated DLLog using real log data collected from 16 systems. The results demonstrate that DLLog achieves high parsing accuracy, universality, and adaptability.