PurposeTo determine if plasma metabolic profiles can detect differences between patients with neovascular age-related macular degeneration (NVAMD) and similarly-aged controls.MethodsMetabolomic analysis using liquid chromatography with Fourier-transform mass spectrometry (LC-FTMS) was performed on plasma samples from 26 NVAMD patients and 19 controls. Data were collected from mass/charge ratio (m/z) 85 to 850 on a Thermo LTQ-FT mass spectrometer, and metabolic features were extracted using an adaptive processing software package. Both non-transformed and log2 transformed data were corrected using Benjamini and Hochberg False Discovery Rate (FDR) to account for multiple testing. Orthogonal Partial Least Squares-Discriminant Analysis was performed to determine metabolic features that distinguished NVAMD patients from controls. Individual m/z features were matched to the Kyoto Encyclopedia of Genes and Genomes database and the Metlin metabolomics database, and metabolic pathways associated with NVAMD were identified using MetScape.ResultsOf the 1680 total m/z features detected by LC-FTMS, 94 unique m/z features were significantly different between NVAMD patients and controls using FDR (q = 0.05). A comparison of these features to those found with log2 transformed data (n = 132, q = 0.2) revealed 40 features in common, reaffirming the involvement of certain metabolites. Such metabolites included di- and tripeptides, covalently modified amino acids, bile acids, and vitamin D-related metabolites. Correlation analysis revealed associations among certain significant features, and pathway analysis demonstrated broader changes in tyrosine metabolism, sulfur amino acid metabolism, and amino acids related to urea metabolism.ConclusionsThese data suggest that metabolomic analysis can identify a panel of individual metabolites that differ between NVAMD cases and controls. Pathway analysis can assess the involvement of certain metabolic pathways, such as tyrosine and urea metabolism, and can provide further insight into the pathophysiology of AMD.
Progression of Parkinson’s disease (PD) is highly variable, indicating that differences between slow and rapid progression forms could provide valuable information for improved early detection and management. Unfortunately, this represents a complex problem due to the heterogeneous nature of humans in regards to demographic characteristics, genetics, diet, environmental exposures and health behaviors. In this pilot study, we employed high resolution mass spectrometry-based metabolic profiling to investigate the metabolic signatures of slow versus rapidly progressing PD present in human serum. Archival serum samples from PD patients obtained within 3 years of disease onset were analyzed via dual chromatography-high resolution mass spectrometry, with data extraction by xMSanalyzer and used to predict rapid or slow motor progression of these patients during follow-up. Statistical analyses, such as false discovery rate analysis and partial least squares discriminant analysis, yielded a list of statistically significant metabolic features and further investigation revealed potential biomarkers. In particular, N8-acetyl spermidine was found to be significantly elevated in the rapid progressors compared to both control subjects and slow progressors. Our exploratory data indicate that a fast motor progression disease phenotype can be distinguished early in disease using high resolution mass spectrometry-based metabolic profiling and that altered polyamine metabolism may be a predictive marker of rapidly progressing PD.
High-performance metabolic profiling (HPMP) by Fourier-transform mass spectrometry coupled to liquid chromatography gives relative quantification of thousands of chemicals in biologic samples but has had little development for use in toxicology research. In principle, the approach could be useful to detect complex metabolic response patterns to toxicologic exposures and to detect unusual abundances or patterns of potentially toxic chemicals. As an initial study to develop these possible uses, we applied HPMP and bioinformatics analysis to plasma of humans, rhesus macaques, marmosets, pigs, sheep, rats and mice to determine: 1) whether more chemicals are detected in humans living in a less controlled environment than captive species, and 2) whether a subset of plasma chemicals with similar inter-species and intra-species variation could be identified for use in comparative toxicology. Results show that the number of chemicals detected was similar in humans (3221) and other species (range 2537 to 3373). Metabolite patterns were most similar within species and separated samples according to family and order. A total of 1485 chemicals were common to all species; 37% of these matched chemicals in human metabolomic databases and included chemicals in 137 out of 146 human metabolic pathways. Probability-based modularity clustering separated 644 chemicals, including many endogenous metabolites, with inter-species variation similar to intra-species variation. The remaining chemicals had greater inter-species variation and included environmental chemicals as well as GSH and methionine. Together, the data suggest that HPMP provides a platform that can be useful within human populations and controlled animal studies to simultaneously evaluate environmental exposures and biological responses to such exposures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.