Clustering is being used in different fields of research, including data mining, taxonomy, document retrieval, image segmentation, pattern classification. Text clustering is a technique through which text/ documents are divided into a particular number of groups, so that text within each group is related in contents. In this paper, the idea of ensemble text clustering of majority voting is defined. For this purpose, different clustering methods such as fuzzy c-means, k-means, agglomerative, Gustafson Kessel and k-medoid are used. After performing the pre-processing of the documents, inverse document frequency (IDF) has been achieved by the provided dataset. The achieved IDF is considered as input to the clustering algorithms. Dunn Index and Davies Bouldin Index have been calculated which are applied to analyze the usefulness of the proposed ensemble clustering. In this work, a dataset "Textclus" which contains four different classes, history, education, politician and art as a text is applied. Additionally, another dataset "20newsgroups" is also applied for analysis. The clustering quality measures have also been calculated from the proposed ensemble clustering results. The attained results show that the proposed ensemble clustering outperforms the other state of the art clustering techniques.