In this paper we present a generic algorithmic framework, namely, the accelerated stochastic approximation (AC-SA) algorithm, for solving strongly convex stochastic composite optimization (SCO) problems. While the classical stochastic approximation (SA) algorithms are asymptotically optimal for solving differentiable and strongly convex problems, the AC-SA algorithm, when employed with proper stepsize policies, can achieve optimal or nearly optimal rates of convergence for solving different classes of SCO problems during a given number of iterations. Moreover, we investigate these AC-SA algorithms in more detail, such as, establishing the large-deviation results associated with the convergence rates and introducing efficient validation procedure to check the accuracy of the generated solutions.