As the core of electronic system, the switched-mode power supply (SMPS) will lead to serious accidents and catastrophes if it suddenly fails. According to the related research, the monitoring of ripple can acquire the health degree of SMPS indirectly. To realize low-cost, high-precision, and automatic ripple measurement, this paper proposes a new ripple voltage (peak-to-peak value) measuring scheme, utilizing a DAC and two high-speed comparators. Within this scheme, the DC component of SMPS output is blocked by a high-pass filter (HPF). Then, the filtered signal and the reference voltage from a DAC together compose the input of a high-speed comparator. Finally, output pulses of the comparator are captured by a microcontroller unit (MCU), which readjusts the output of the DAC by calculation, and this process is repeated until the DAC output is exactly equal to the peak (or valley) value of ripple. Moreover, in order to accelerate the measurement process, a peak estimation method is specially designed to calculate the output ripple peak (or valley) value of buck topology through merely two measurements. Then the binary search method is utilized to obtain a more exact value on the basis of estimative results. Additionally, an analysis of the measurement error of this ripple measurement system is executed, which shows that the theoretical error is less than 0.5% where the ripple value is larger than 500 mV. Furthermore, appropriate components are selected, and a prototype is manufactured to verify the validity of the proposed theory.