2022
DOI: 10.1613/jair.1.13153
|View full text |Cite
|
Sign up to set email alerts
|

Online Relaxation Refinement for Satisficing Planning: On Partial Delete Relaxation, Complete Hill-Climbing, and Novelty Pruning

Abstract: In classical AI planning, heuristic functions typically base their estimates on a relaxation of the input task. Such relaxations can be more or less precise, and many heuristic functions have a refinement procedure that can be iteratively applied until the desired degree of precision is reached. Traditionally, such refinement is performed offline to instantiate the heuristic for the search. However, a natural idea is to perform such refinement online instead, in situations where the heuristic is not sufficient… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?