including the URL of the record and the reason for the withdrawal request.
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICSAbstract-Fast and reliable detection of stator faults is of key importance for fail-safe and fault tolerant machine drives in order to immediately trigger appropriate fault mitigation actions. The paper presents a detailed analytical and experimental analysis of the behavior of a closed loop controlled permanent magnet machine drive under inter-turn fault conditions. It is shown that significant 2nd harmonic components in the dq voltages, currents, instantaneous active power (IAP) and reactive power (IRP) are generated during turn fault conditions. The analyses further show that the increase of the 2nd harmonic in IAP and IRP during fault conditions is comparatively higher than that of voltage and current, making them ideal candidates as turn fault indicators. A turn fault detection technique based on 2nd harmonic in IAP and IRP is implemented and demonstrated for a triple redundant, fault tolerant permanent magnet assisted synchronous reluctance machine (PMA SynRM) drive. The effectiveness of the proposed detection technique over the whole operation region is assessed, demonstrating fast and reliable detection over most of the operating region under both motoring and generating mode.Index Terms-Fault tolerant, turn fault, fault detection, fault mitigation, 2 nd harmonic, active power, reactive power.