Disturbances in metabolic balance brought about by alterations in thyroid state and undernutrition during early life had a marked effect on the concentrations of the brain-specific proteins, D1, D2, and D3 in the developing rat cerebellum. In normal rats, the concentrations of D1 and D3 increased and that of D2 decreased during the first 3 weeks after birth. In the hyperthyroid state a small but consistent advancement was observed in the developmental curves of these proteins. The hypothyroid state caused a marked retardation in the maturational pattern of D1 and D2 but not of D3. In undernutrition, at 6 days the concentrations of D1 and D3 proteins were higher than in controls, but thereafter the developmental increase was markedly delayed for D1 only. The concentration of D2 was normal at 6 days, but after the first week a marked retardation was observed in the maturational pattern of this protein in undernourished rats. In addition, the "anodic-immature" form of D2 predominated in 6-day-old controls, but this was gradually replaced by a "cathodic-mature" form which progressively became the dominant form of D2 in 35-day-old rat cerebellum. The developmental switch in terms of the two forms was also advanced in hyperthyroidism and retarded in thyroid deficiency and undernutrition. Furthermore, daily treatment of hypothyroid rats with physiological doses of thyroxine from birth restored the concentrations of D1 and D2 to normal, but that of D3 was increased above control levels, indicating differences between the proteins in their sensitivity to mechanisms of control by thyroid hormone. Also, the overall effects of undernutrition were markedly different from those of hypothyroidism.